If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+7t-6.12=0
a = 4.9; b = 7; c = -6.12;
Δ = b2-4ac
Δ = 72-4·4.9·(-6.12)
Δ = 168.952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{168.952}}{2*4.9}=\frac{-7-\sqrt{168.952}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{168.952}}{2*4.9}=\frac{-7+\sqrt{168.952}}{9.8} $
| 6n-15=n+6 | | 2M-6n-5;n=1,2,3 | | 7n-2=3n-10 | | 10b-9b=16 | | 3x+49=34 | | 8n-20=15/n | | 1y+1=3y | | f=9/5(19)+32 | | 4v+5-4(-3v-1)=(6v-1) | | 1n+5=6 | | 8(h+3)=45 | | 99-5n=104 | | -17=4n+3-8n | | 82-x=75 | | 1/3y-5=-16 | | -5v+-v=12 | | -3m-7=23 | | v+2/11=-2 | | 45-x=10 | | 5f+4=2f-2 | | 15b+6b-13b=16 | | 2+m/3=9 | | x+-5=x+3 | | 15+5(5x+15)=415 | | x/5+11=8 | | 3/x-10/x+4=1 | | 5+3t=23 | | -4y(3y-5)=-4(5y-17) | | 16n+48=20 | | 1+n/3=3 | | 3(d-7)=3 | | -3/5(4x-1)+5/8(4x-3)=-11/10 |